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An integral equation for the current induced in a dielectric body by incident electro- 
magnetic radiation is solved for the case of a thin flat circular disc of homogeneous lossy 
dielectric material. The equation is reduced by using the method of moments to a linear 
algebraic matrix equation for the coefficients in an expansion of the current density 
as a linear combination of basis functions. The matrix elements consist of integrals in- 
volving the basis functions. The novel computational aspects of this work lie in the 
choice of basis functions and in the techniques which this choice enabled to handle 
singularities in the integrands when evaluating the matrix elements, to reduce the matrix 
size and to rigorously preserve symmetries in the matrix. Expressions are given for the 
scattering and absorption cross sections in terms of the expansion coefficients. The 
results are most suitable in the resonance range of wavelengths when the disc radius 
and free-space wavelength are of the same order of magnitude. 

1. INTR~DuOTJ~N 

Analytic solutions do not exist for the scattering and absorption of electro- 
magnetic radiation by objects for which the vector wave equation is not separable. 
To handle other shapes it is necessary to use numerical techniques. One method 
which has been used with success for perfectly conducting bodies is to solve an 
integral equation for the surface currents induced by the incident wave; then to 
use these currents to compute the reradiated field [l-3]. There is no absorption in 
this idealized case. 

In this paper we apply a similar technique to treat the scattering and absorption 
for thin dielectric discs. The induced currents are volume currents rather than 
surface currents, which greatly increases the complexity and size of the problem 
compared to the perfectly conducting case. We have used the method of moments 
to reduce the integral equation to a set of algebraic equations. This is similar 
to the methods used for perfect conductors in [l, 21, for example, but the functions 
we have used as basis functions in which to expand the unknown current density 
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112 CHU AND WEIL 

and as weighting functions when taking moments are more appropriate to the 
volume distribution problem than the functions used in the references. We have 
also used a different method than that in [l, 21 to approximate the integrals 
involved so as to preserve exactly the symmetry which should exist in the resulting 
matrix equations. Our choice of basis functions also aids in evaluation of the 
integrals in the vicinity of singularities which occur in the integrands and are 
chosen to be particularly appropriate for the thin disc problem. 

The derivation of the integral equation and a number of computed scattering 
patterns plus the related total scattering and absorption data are given in a separate 
publication [4]. In this article we concentrate on the techniques used for solution 
of the integral equation. They form a variant of finite element methods as explained 
in Section 4. 

Before proceeding we mention other work which has been published on the 
scattering by dielectric bodies. In [5] an integral equation for the induced field 
within the object is solved numerically by the point matching technique. In [6] 
an integral equation for induced “equivalent” surface-currents is solved by using 
orthogonal expansions of the fields. In [7] the vector wave differential equation 
is solved using an adaptation of Galerkin’s method in which boundary conditions 
are enforced on the smallest spherical surface surrounding the object. In each of 
these papers the method was developed for arbitrary bodies and in none was it 
applied to thin discs. 

2. THE INTEGRAL EQUATION AND REDUCTION TO ALGEBRAIC EQUATIONS 

The integral equation for induced current J in a homogeneous dielectric object 
of refractive index n is 

Ei- -’ 
jmco [ LeJ-&] 

where L is the self-adjoint integral operator defined by 

(1) 

L * J = sss, dv’ J(R’) G(R, R’) 

- j-1 ds’ J(R) . g(R) VG(R, R’) 
s 

(2) 

D and S represent the volume and surface of the object and 

G = exp(j 1 R - R’ 1)/(&r ( R - R’ I). (3) 

All lengths are normalized by multiplication by k = 27r/X where X is the free space 
wavelength. The time dependence of the fields is assumed to be of the form ejot. 
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The refractive index n then has a negative imaginary part except for ideal non- 
dissipative, nonconductive dielectrics. 

To reduce (1) to a set of linear algebraic equations via the method of moments 
J(R) is expanded in a series of functions. 

J(R) = -jwq, c ajWj(R). 

These expansion or basis functions should satisfy the requirement 

v*wi=o in D 

W*fi#O on S 
(5) 

to ensure the similar properties for J(R) itself. Substitution of (4) into (1) yields 

Ei = c q[L * Wi - (l/(n2 - 1)) W,]. 

Using the inner product 

<f, g> = jjj du’ f(R’) * g(R’) 

with (4) then yields an algebraic matrix equation to solve for the CQ 

(Wj , Ei) = - C ~~i[Zij - W.j/(n” - l)] 

where 
Zij = (WC 7 L ’ Wj>, Wij = (Wi 9 Wj). (9) 

Equation (8) represents the moments of Ei with weight functions Wj ; i.e., the 
same functions as used for the basis functions. 

The symmetric matrix [Zij - W&z2 - l)] is termed an impedance matrix. 
All material effects are confined to the factor (n2 - 1)-l while shape effects only 
are included in Zij and Wij . This separation proves of major practical importance 
because, to cut down on matrix size, our procedures lead to fairly complex and 
lengthy approximate expressions for the Zij ; hence it is relatively expensive to 
load Zdj into the computer. Once this is accomplished, however, the stored Zij 
and W+j may be used to investigate many materials. 

We mention at this point that these approximate expressions for Z,, preserve 
the property Zij = Zj, exactly. By contrast the techniques used elsewhere as in 
[I, 21 do not preserve this symmetry. For problems treated in [2] numerical 
experimentation showed that the deviations from symmetry were small, but we 
have found that, for the dielectric disc problem the matrix evaluation methods 
of [2] lead to very pronounced assymetry. 
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So far the analysis holds for any homogeneous dielectric body. The fact that 
our application is to thin discs is first used in choosing W,(R) functions so as to 
minimize the required number of terms in the sum (4). This is explained in Section 4. 

3. SCATTERING AND ABSORPTION CROSS-SECTIONS 

Before going on to the problem of determining the oli in the specific case of 
concern here, we give the formulas which express the scattering and absorption 
in terms of the expansion coefficients ai . 

The scattering formulas are obtained by direct substitution of the current 
density into standard textbook formulas for the radiation field generated by a 
known current distribution. The bistatic cross section ~~(0, I$) is defined in terms 
of a spherical coordinate system (r, 0, 4) with origin in the object, for an incident 
plane-polarized plane wave as 

%B(R ($1 = 
radiated power/solid angle in direction (0, 4) 

incident power/area (10) 

for radiated power far from the scatterer. This becomes 

(11) 

where 

we, 4) = JJ dv’ &+Wi(r’). 

The absorption is found by integrating the ohmic loss in the body. The fact 
that the body is lossy is expressed by a finite conductivity u which renders the 
refractive index complex: 

n2 = E, - ja/we, = n’ - jn”. 

The loss per unit volume is J, . J,*/(2a) where J, is the part of the induced current 
which is conduction rather than polarization current, and the asterisk indicates 
complex conjugate. The integration of this expression over the volume yields the 
absorption cross-section. 

ua = 
power dissipated in the material 

incident power/area 
(12) 
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Formulas for other measures of scattering and absorption, such as the matrix 
relating fields rather than powers and the remaining Stokes parameters could be 
derived in similar fashion. 

The specific forms which (11) and (12) take for the Wi functions chosen in the 
sequel are listed in Appendix B. 

4. CHOICE OF BASIS FUNCTIONS 

We use a cylindrical coordinate system (p, $, z) with z along the symmetry 
axis of the disc. The disc fills a region given by -4 < z < 6, 0 < p < a. Then, 
bearing (5) in mind we choose the Wi from the following sets of functions. To 
most concisely express the induced current when Ei is perpendicular to 2 we use 
the TE mode 

where 

wpnz, = v x {m(p) Z,(z) CD,($)} (13) 

Z,(z) = zn; G,(Q) = sin rn+ or am($) = -cos m+. (14) 

The form of Z,(z) is chosen to permit easy integration over z when evaluating 
the impedance expressions. In accord with the thin disc assumption only terms 
of order P or greater will be kept in the impedance, hence only n = 0 and 1 
functions will be needed. The following odd TE modes resulting from the choice 
of sin mtj in (13) result. 

etc. 

W$gm’ = $(mR(p)/p) sin rn# + JR’(p) cos m+ 

wpz) 
(15) 

= j?(mR(p)/p)z sin mf$ + JR’(p)z cos m+, 

When the incident wave is propagating either parallel or perpendicular to f 
and is plane polarized with Ei perpendicular to D only the one mode, Wpl), is 
necessary. 

Similarly, TM modes defined by 

wpz) = v x w@m) (16) 

most concisely express the currents induced when Ha I 9. The odd TM nodes are 

Wsrnt = Z[(R’(p)/p) + R”(p) - (m2R(p)/p2)] sin m+ 

Wkrn’ = j%‘(p) sin m+ + &mR(p)/p) cos m+ (17) 

+ 4-(WfYfl - Wp) + (m2Wlp2)1 sin md. 
etc. 

581/22/r-g 
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For even modes rnd is to be replaced by rn+ + (7r/2) in (14) and (17). When 
neither Ei nor Hi are perpendicular to 9, a combination of TE and TM mode W 
functions will be required. 

With these W functions there is no coupling between the different values of m; 
that is, the impedance terms corresponding to use of Wcnsrn) and WCnpm’) are zero 
when m # m’. 

We will choose a set of R(p) functions (&(p)} which will generate corresponding 
sets of basis functions {W’$*)} and {Wc;m)}. Each &(p) is chosen to be zero over 
all but a fractional part of the interval 0 < p < a. The subintervals are taken 
small enough to permit the integrals to be evaluated by approximate means with 
adequate accuracy. A trade-off is involved in the choice of interval size; larger 
intervals require a lesser number of basis functions hence smaller impedance 
matrices, but on the other hand the larger intervals lead to longer, more complex 
expressions to express the individual matrix elements with sufficient accuracy. 
We avoid an excessively large number of intervals with the choice of R&J) given 
below. We are then able to treat the singularity region to desired accuracy by 
reducing the problem to the singularity integration for a statics problem plus 
correction terms, all of which are evaluated analytically. We do end up with 
lengthy expressions for the matrix elements as we mentioned earlier. 

In the choice of R&J) we deviate from past practice in the literature [ 1, 21 where 
perfectly conducting objects were considered and linear triangular functions were 
used. However, one needs second derivatives of R(p) for the dielectric case. For 
the triangle functions these would be impulse functions which would correspond 
to simple pointwise sampling of these terms. Therefore, for greater accuracy we 
choose instead symmetric functions made of segments of second order poly- 
nomials. Specifically, we divide the interval 0 < p < a into N contiguous segments 
of length a/N. Then the functions Z&(p) are the spline functions illustrated schemat- 
ically in Fig. 1 and defined for i = 1, 2 ,..., N by (18). 

(a/N)(i - 1) < p < (a/N)& (1/NW2 b - (a/W - 1)l” 
(a/W < p < @/N)(i + 11, - 1 + WW[p - (u/N)(i - l)] 

- WWW2 b - G - lWW12 (18) 

WW + 1) < p -=c (4N)G’ + 21, - 1 + W/N)@lN)(i + 3) - pl 
- (l/2NW2 [@/N)(i + 3) - PI2 

@/N)G + 2) d p d WWG + 31, (1/2)(N/42 WN)(i + 3) - PI2 

provided p < a. For p > a, &(p) = 0. This treatment of the radially dependent 
part of the problem is typical of techniques used in finite element methods. Note 
that there is an overlapping of the Ri’S in the integrations for Zij and Wij . 



SCATTERING AND ABSORPTION OF ELECTROMAGNETIC RADIATION 117 

.a;’ 

i-l i i*l i+2 i*3 P 

rodiol distance in units oft 

FIG. 1. Illustration of the function defined in Eq. (18). 

Numerical evaluation of the integrals is facilitated by use of average values over 
short intervals for R,(p), and functions involving R&J), and its derivatives. For 
this each interval (a/N)(i - 1) < p < (u/N)(i + 3) is subdivided into eight equal 
parts denoted by p = l,..., 8 each extending from 

ai9 = @/W(i - 1 + ((P - 1)/2N 
to (19) 

r&l = wmi - 1 + (P/2)) 

TABLE I 

Mean Values of the Radial Functions 

1 
1 

24 

2 
7 

24 

3 
17 
24 

4 
23 
24 
23 

5 
24 

6 
17 

24 
7 

7 
24 

8 
1 

24 

-k+ti 

-A+ii 

+i+ii 

+i+bi 

1 1 
3 4 

i 

4 3. 
-j-z1 

5 3 ----j 
3 4 
2 1 ----j 
3 4 

t(i-t) ~[~-f+(i-l)zLn~] 

G(i-f) G[i-i+(i-l)aL*&] 

-G(i+i) ~[~+~-(ia+2i-l)Ln~] 

-G(i+i) c[i+i-(P+Zi-l)Ln$$ 

-c(i+$ ~[~+~-(P+2i--l)Ln~] 

-:(i+i) ~[~+~-(iz+2i-l)Ln$] 

G(i+$) ~[-~-~+(i+3)PCn$$] 

G(i+:) ~[-~-~+(i+3)zLn~] 
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and centered on yiz, . We define averages over these intervals 

Ai, = (R<(p)>, = (u/~N)-~ fig Ri(p) dp 
*sin 

and similarly 

Bi, = <&‘(pD, 7 ci, = @i(P)), 7 

Dip c (K(P))~ 7 4, = @i(dl~), . 

Table I lists the explicit formulas for Ai, ..* Ei, . 

(20) 

(21) 

5. EVALUATION OF IMPEDANCE FOR THIN FLAT CIRCULAR DISCS 

The Wij each involve only one volume integral and can be evaluated analytically 
with our choice of polynomial functions for the R{(p) by straightforward integra- 
tion. The results are given in Appendix A. 

The Zij each involve double volume or surface integrals. They are carried out 
by partly numerical and partly analytical methods. 

To begin with the double integration over p and 4 is reduced, using trigonometric 
identities, to integrals of the types 

(22) 

where G(u) represents the dependance of the Green’s function on u E # - 9’. 
G(u) is an even function of u. The u integration is carried out numerically as a sum 
over L equal angular sectors using 

(23) 

where the uy are midpoints of the sectors. For greater accuracy, the I = 1 interval 
where G(u) is rapidly varying (near the integrable singularity for u = 0) may be 
further subdivided. 

For the p integrations we split the intervals in which Ri(p) and Rj(p) overlap 
into the subintervals centered on p = ydZ, which are described by (19). Then in 
each subinterval we replace the R,(p), R;(p) etc. by the averages listed in Table I. 
With these approximations the Zii integration reduces to linear combinations of 
terms of the form 

I+, p’, 4 = jwy;2 dz’ jey;2 dz W, z’, p, P’, 4. (24) 
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The function G is given by (3) and may be rewritten as 

G _ ’ exp(-j(D2 + z2)“2) 
4rr (02 + zy (25) 

where the transverse distance D is the projection of 1 R - R’ 1 on a plane per- 
pendicular to the z-axis; 

D = D(p, p’, ut) = (p” + p112 - 2pp’ cos ZQ)‘/~. (26) 

For a specitic example consider the impedance Ziljl due to the xeroth order TE 
modes WiT”) and WEj . (OJJ) With the steps and notation so far introduced we have 

ziljl - (zT2/,3 i 2 -f sBip dp /‘ja dp’{cos mu1 cos ut(m2AtpAj, + Bi,Bj,) 
Z=l p-14=1 ais a+2 

+ m sin mu, sin u&&Bjq + &&,)I I(p, p’, ul) 

- (27r2/L) m2((1/2)Si + Sh-I + (1/2)&)((1/2) S,” + Sk-, - (l/2) Sk-,) 

x cos mu&z, a, ul). (27) 

Here S,fl = 1 if 01 = p, = 0 if (Y # /3. The values ofp, and q. are given by Table II. 
They are determined by the number of overlapping subintervals (19) which lie 
within the integration range 0 < p < a. To evaluate the integrals (24) we introduce 

(28) 

D is the transverse distance between center points of subintervals defined by (19). 
Then noting that Z = / z - z’ I < S < 1 and I D - D j < 1 we approximate 
the function G of (26) as follows. 

G = (1/47r) exp(-jD) 
exp(-j(D2 + Zz)lj2 - jD) 

(D2 + Z2)li2 

- exP(-JJ) 1 +jD 
4rr i (D2 + Z2)1/2 - j). 

(29) 

TABLE II 

Summation Limits p. and q. 

i PO,% 

<N-3 8 
=N-2 6 
=N-I 4 
=N 2 
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With this approximation (25) may be evaluated correct to terms of order 6 by 
straightforward integration. By use of (29) we have reduced the integrations to 
that of the statics problem where the Green’s function G is simply (II2 + Zz)-l12. 

The final forms we obtained for Ziljl are given in Appendix A. 

6. NUMERICAL EVALUATION 

For a given incident wave direction and polarization the left side of (8), (Wi , Ei), 
is readily evaluated analytically with the Wi function we have introduced. We 
have done this and worked out numerical results for broadside and edge on 
incidence when Ei is parallel to the plane of the disc and a < 6. The formulas 
for (W, , Ei> are given in Appendix A and numerical results are given in [4]. As 
pointed out in Section 4 only one set of basis functions is needed for these cases, 
the lowest order TE modes corresponding to Whh’ evaluated for the members of 
the set (&}. A study of these cases thus can be looked at as a study of the building 
blocks or submatrices from which to handle more general cases. We used matrix 
inversion by converting to upper and lower triangular matrices and experimented 
with the effects of angular and radial interval sizes and the use of double precision 
airthmetic. 

We found very little change in the scattering results when we used more than 
10 radial and 12 angular intervals in the range 0” < u < 90” (all that is needed 
because of symmetries) using single precision arithmetic. For the case of incidence 
edge-on, letting m be the nearest integer exceeding ku + 1 was sufficient. For this 
small number of radial intervals the matrix inversion costs were trivial, almost 
all the computation costs went into loading matrix & which, as we pointed out 
in Section 3 is independent of the disc material and so may be stored and used for 
many materials. This fact and the very small matrix size which the experiment 
indicated is needed for each submatrix corresponding to an m value indicates 
that the computing costs will not be excessive for more complicated cases involving 
irradiating fields incident in arbitrary directions or involving more than one disc. 

We should point out that our method was designed for use with thin lossy 
dielectric discs, not highly conducting ones. The induced volume distribution of 
current is assumed to be uniform across the thin dimension 6 of the disc; conse- 
quently it, the resultant fields and the cross sections all vanish as 6 + 0. On the 
other hand, for highly conducting discs n N ~(1 -j), lim,,, n, = co and the 
induced current is confined to the surface. In fact, for 0 = cc, since the induced 
current is a pure surface current, even a disc of zero thickness yields a nonzero 
scattering cross section-which in fact will approximate well the results for highly 
conducting thin discs. On the other hand, for n, 2 IO6 brief numerical experimenta- 
tion using our procedures showed the broadside back-scatter to be roughly propor- 
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tional to @. For a thickness of 6 = 0.1 and n, > lo6 broadside backscatter com- 
puted by our methods ka < 6 increases radically relative to the values for low 
refractive index; the backscattering cross section versus ka curve follows the 
result computed in [8] for infinitely thin perfectly conducting discs but is roughly 
a factor of four smaller. 

APPENDIX A: IMPEDANCE AND EXCITATION FORMULAS FOR 
LOWEST ORDER TE MODES 

Impedances 

p;‘“’ N 
L PJ (1d 

(7rS2/2L) 1 C C e+‘{(l + jD) Fz -j(u/2N)‘} 
1=1p=1g=1 

where 

X (COS mu1 cos ul(m2AiPAi, + B,,Bj,) 

+ sin mu1 sin ut(mAi,Bj, + mBi,Ajg)} 

- m2 cos mu1((1/2) SNi + SL-, + (l/2) Sk-,) 
* ((l/2) SNi + @,_I + (l/2) Sk-,) e~~~2ae~1~cosu~~~1’2K(UI) (Al) 

%(&.A P, 4) = Fdlgiz, , Pi,) + Fdail, , 4 - FdBi, 2 ad - Fdai, , AA 642) 

F,(r, r’) = r’ In(r - r’ cos uL + R) + r ln(r’ - r cos uL + R) 
+ 2(sin u,/S)[r’2 tan-l(r’S sin uJ((r - r’ cos uJR + d2)) 
+ r2 tan-l(rS sin uJ((r - r cos ul)R + d2))] 
- (sin2 uL/S2)[r’3 ln((r - r’ cos uz + R)/(r - r’ cos uC + d)) 
+ r3 ln((r’ - r cos uz + R)/(r’ - r cos uz + d))] 
+ (d2 cos ut - 2rr’ sin u,)(R - d - 26 ln((S + R)/d))/S2 (A3) 

K(u,) = (2/S) ln((2a2(1 - cos 24,) + S2)1/2/(2a2(1 - cos ~3)~‘~) 
- (2/S2)[(2a2(1 - cos uz) + S2)li2 - (2a2(1 - cos uJ)~/~] -j (A4) 

The values of p,, and q,, are given in Table II. 
Formulas for Wz = Wg 3 ( Wi:“‘, Wan:““) are as follows. Ws$ is nonvanishing 

if/i--j(<3.Wehave 

w;+1 = W,r”,l,i 2 W&2 = KT2,i 9 wim+3,i = wi’l”i+, 3 

WTi = fi”“(i) i=N 

= fi" + f2” i=N-1 
= f;" +fi” +f3m i=N-2 
= fi” +f;” +f,” -bf;” i<N-3, (0 
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s;“(i) = ?7q(m2/4)[(1/4) - ((i - 1)/3) + ((i - 1)2/2) - (i - 1)” 

+ (i - l)* Ln(i/(i - 1))l + (l/4) + ((i - 1)/3)) 

gyi) = Td{(m2/4)[(7/4) + (11/3)(i 4 1) - ((i + 1)2/2) - (i + 1)s 

- Ki + 1)” - 4(i + 1)” + 41 Ln(i/(i + I))1 + ((i + I)/31 - (l/4)}, CM) 

f3Yi) = 7d((m2/4)[--(7/4) + ll((i + 1)/3) + ((i + 1)2/2) - (i + 1j3 

- [(i + 1)” - 4(i + 1)” + 4)1 WG + 2)/G + WI + U/4) + ((i + Q/3)}, 

fd”(i) = PS((m2/4)[-(l/4) - (1/3)(i + 3) - (1/2)(i + 3)2 - (i + 3)3 

- 6 + 3)* Ln((i + 2)/(i + 3))l + ((i + 3)/3) - U/4)), 

K?,l = g1”ti> i=N-1 

= SW + g2V) i=N-2 

= g?V) + g2W + g3W i<N-3, (A7) 

glm(i) = ~d{(m~/4)[(11/12) - (5/3)i + (3/2) i2 + i3 - (i2 - 2i3 - i*) Ln((1 + Q/i)] 

+ ‘J/W + WN 

gzm(i) = d((m2/4)[(25/12) + (11/3)(i + 1) - (3/2)(i + 1)” - (i + 1)3 

+ [2 - 4(i + 1) - 3(i + l)2 + 2(i + 1)” + (i + l)*] Ln((i + 2)/(i + 1))] 

- U/W - (G + 1)/W 

gsm(i) = rr6{(m2/4)[-(37/12) - (5/3)(i + 2) + (3/2)(i + 2)2 + (i + 2)3 

+ [2 + 4(i + 2) + ti + W - 2(i + 213 - G + 2j41 Ln((i + 3)l(i + 91 
+ U/W + (ti + 2)/6), W) 

WE+2 = h(i), i=N-2 

= h(i) + h,(i), i<N-3, W’) 

h,“(i) = 7r6{(m2/4)[(3/4) - (5/3)(i + 1) - ((i + 1)2/2) + (i + 1)” 

+ PC + 1j2 - G + I)*1 LnNi + 2)/G + WI - O/4) - ((i + O/3)}, 

hzm(i) = ~rS((m~/4)[--(3/4) - (5/3)(i + 3) + ((i + LV2/2) + ti + 3)3 

+ Kj + 3)* - W + 3121 W(i + 2)/Q + 3)N - ((i + 3)/3) + U/4)), 
(A 10) 

WrifB = ~d{(m~/4)[(1/12) - (1/3)(i + 2) - (3/2)(i + 2)2 - (i + 2)3 

+ Ki + 2)* + W + 9 + (i + 2j21 Ln(ti + 3)lti + 2Nl 
- P/W - WN, i,(N-3. (Al 1) 
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Excitations 

We give the formulas for If”’ = ( W$m’, Ei) for two cases. 

(a) Broadside incidence Ei = se-i*. 

The odd TE mode with m = 1 is the only one excited. To O(a2) 

I$’ = ha/2 

I”! = &a Nl 

I,$?, = ha/2 tA12) 

19) z t 0 3 i<N-2 

z!m) = E 0 3 n2 > 1 

(b) Edge-on incidence, E parallel to the disc surface, Ei = se-+. 

The odd TE modes for all m are excited 

Zja) = TS(--~Y-~ (a/2N) f (mAi, + Bip) Jm&d + (mAi, - 4,) .L+drd 
p=1 6413) 

Here the J&J are Bessel functions. 

APPENDIX B: CROSS SECTION FORMULAS 

For W$‘#“) the bistatic cross section (11) reduces to 

4R 4) = WWW c [I cm2 0 sin2 m4(fm - gm)12 + I cm2 m$(fm + gm)121 
rn 

where 
N (10 

W 
gm = 1 C %tmA2 - &J J,+dyi, sin 0 

i=l Q=l 

Evaluating (12) gives the absorption cross section 

a - (-2n’n”/i(n2 - I)\” k2) C f cyiq* WTi + 5’ (o+Y~+~ + CY~*CK~+~) Wpj+l a- 
7n I id i=l 

N-Z N-3 

+ 1 kwi*+P + %*%+2) WE+2 + C (%%53 + %*%+3) Wri+3 . WI 
i=l i=l I 
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